Skip to main content

Experiment into quantum communications is heading to the ISS

A tiny, milk-carton-sized experiment soon to be installed on the International Space Station (ISS) could represent the future of communications, enabling quantum computers to communicate with each other over vast distances. The experiment, called Space Entanglement and Annealing QUantum Experiment (or SEAQUE), will be launched to the ISS later this year.

As computers get faster and space projects gather more and more data, we’ll need faster communication networks to send all of that data back to Earth. NASA is currently in the process of upgrading its Deep Space Network to dishes that can use laser-based communications, which offer the transfer of data around 10 times faster than current radio-based communication systems. But future quantum computers will need even faster quantum communication networks, and that is what SEAQUE is investigating.

The blue and gold brackets of the site on the ISS that the SEQUE experiment will be attached to, circled in red.
SEAQUE will be hosted on the International Space Station by the Nanoracks Bishop airlock. The blue-and-gold brackets attached to the side of the airlock are for external payloads. The technology demonstration will be installed at one of those sites. NASA

SEAQUE will look at whether communications could be achieved over large distances using entangled photons. “SEAQUE will demonstrate a new and never-before-flown entanglement source based on integrated optics,” said Paul Kwiat, the project’s principal investigator at the University of Illinois Urbana-Champaign, in a statement. “Such a source is inherently much smaller, more robust, and more efficient at producing photon pairs than the bulk optic entanglement sources used in previous space experiments.”

Recommended Videos

Another aspect of technology being tested by SEAQUE is whether communication nodes can “self-heal” if and when they are damaged by radiation. This is a problem for many space-based technologies, which have to operate outside of the Earth’s protective magnetosphere and so are exposed to space radiation. The sensitive detectors used in SEAQUE will be degraded over time by radiation, so included within the unit will be a laser which will periodically repair this damage.

“Demonstrating these two technologies builds the foundation for future global quantum networks that can connect quantum computers located hundreds or even thousands of miles apart,” said Makan Mohageg, SEAQUE co-investigator at NASA’s Jet Propulsion Laboratory in Southern California.

The SEAQUE experiment will be attached to the outside of the Bishop airlock on the ISS, which is a commercial airlock operated by the company Nanoracks. The company will also operate the mission in partnership with NASA. The launch of the experiment is scheduled for no earlier than August this year.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA reveals new launch plan for SpaceX’s Crew-10 — here’s how to watch
The crew of NASA’s SpaceX Crew-10 mission.

[UPDATE: SpaceX and NASA scrubbed Wednesday's launch attempt due to a technical issue on the ground. The article below has been updated to include details on the new launch target.]

SpaceX and NASA called off the launch of Crew-10 to the space station on Wednesday evening. They're now targeting 7:03 p.m. ET on Friday, March 14, for the launch of Crew-10 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Read on for full details on how to watch a livestream of the event.

Read more
Watch how astronauts train for the space station’s microgravity
ESA's aircraft for astronaut training.

The main difference between life on the International Space Station (ISS) and life here on terra firma is microgravity, which forces you to float around rather than walk.

To prepare newbie astronauts for such conditions, NASA, or in this case, the European Space Agency (ESA), takes new astronauts on special flights that are able to imitate -- albeit briefly -- the space station's microgravity environment. The important training enables the astronauts to get used to moving, working, and even jumping in microgravity. If they get really good, they'll be able to dance, too.

Read more
Astronaut’s jaw-dropping photo shows a different kind of ‘aurora’
The so-called "Thai aurora" as seen from the space station.

Forget seeing the Great Wall of China from space. Everyone now knows that that’s a falsehood -- unless, of course, you have an astronaut peering through a high-powered lens. But one thing you can definitely see from space are the fishing boats of Thailand.

Current space station astronaut Don Pettit has just shared a striking long-exposure image that shows the boats’ green lights streaking through the frame. The top of the photo also shows part of the space station as well as star streaks in the background.

Read more